Figure: 28 TAC §4.2824(2)

The length of a particular contract segment must be set equal to the minimum of the value t for which G<sub>t</sub> is greater than R<sub>t</sub> (if G<sub>t</sub> never exceeds R<sub>t</sub> the segment length is deemed to be the number of years from the beginning of the segment to the mandatory expiration date of the policy), where G<sub>t</sub> and R<sub>t</sub> are defined as follows.

 $G_t = GP_{x+k+t} / GP_{x+k+t-1}$ 

where:

x = original issue age:

k = the number of years from the date of issue to the beginning of the <u>segment</u>;

t = 1, 2, ...; t is reset to 1 at the beginning of each segment;

GP<sub>x+k+t-1</sub> = Guaranteed gross premium per <u>thousand of</u> face amount, for year t of the segment ignoring policy fees only if such policy fees are level for the premium paying period of the policy.

 $R_t = q_{x \pm k \pm t} / q_{x + k + t - 1}$ . However,  $R_t$  may be increased or decreased by 1% in any policy year, at the company's option, but  $R_t$  must not be less than one:

where:

x,  $\underline{k}$  and t are as defined above, and  $q_{x+k+t-1}$ = valuation mortality rate for deficiency reserves in policy year  $\underline{k+t}$  but using the mortality of  $\S4.2825(b)(2)$  of this title if  $\S4.2825(b)(3)$  of this title is elected for deficiency reserves.

However, if GP<sub>xtktt</sub> is greater than 0 and GP<sub>x+k+t-1</sub> is equal to 0, G<sub>t</sub> must be deemed to be 1000. If GP<sub>x+k+t</sub> and GP<sub>x+k+t-1</sub> are both equal to 0, G<sub>t</sub> must be deemed to be 0.